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PRESSURE GROWTH DYNAMICS DURING FREEZING

OF A CLOSED VOLUME OF WATER WITH DISSOLVED GASES

UDC 536.421.4: 532.7Yu. A. Sigunov and Yu. A. Samylova

A model for the freezing of a closed volume of water with dissolved gases is proposed and studied
numerically. It is shown that gas release during ice formation leads to a considerable time delay in
the time of a sudden pressure increase. In the freezing process, the pressure depends not only on the
volume of ice formed but also on the freezing rate, which is determined by the cooling rate and the
geometry and dimensions of the freezing volume.
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Introduction. The freezing of water media in the pore space of soils, water handlings, and in and near wells
in permafrost rock occurs in closed volumes and gives rise to high pressures resulting in unfavorable consequences,
such as soil foaming [1], deformation, rupture, and collapse of well and pipeline casings [2]. In the unfrozen region,
the pressure increases with increasing volume fraction of ice because the density of ice is lower than that of water.
Usually, the pressure variation is estimated taking into account only the compressibility of water and ice [2, 3]. In
this case, the pressure in the unfrozen region is uniquely determined by the volume fraction of ice formed and does
not depend on other factors influencing the freezing rate.

In practice, water contains dissolved air even under atmospheric conditions. At a temperature T = 0◦C
its volume fraction is about 3.6%; under different conditions, the concentration of dissolved gases can be higher.
During ice formation, gas molecules are almost completely forced into water. In this case, the dissolved-gas flow
that arises at the freezing boundary exceeds the gas-diffusion flows in water. As a result, the gas concentration near
the ice surface increases and conditions for its passage from the solution into the free phase are produced. Similar
processes are involved in melt crystallization [4].

The occurrence of even small amounts of free gas in the volume can have a strong effect on the compressibility
of the system and the pressure rise rate. In the present paper, we propose and numerically study a mathematical
model for the freezing of water with dissolved gas in a closed volume including the classical formulation of the
Stefan problem with a moving phase-transition boundary taking into account the displacement of the gas dissolved
in water at the interface, diffusion transfer with possible passage of the gas into the free phase, pressure variation
in the system with a variable amount of free gas, and a pressure dependence of the freezing temperature.

Calculating the kinetics of formation and growth of gas bubbles in a supersaturated solution (including their
amount and size distribution) is a separate complex challenge. Therefore, in the model considered, the structure
of the free gas phase is ignored as a first approximation and its compressibility is assumed to depend only on its
total volume in the unfrozen medium. The dependence of the rate of gas release into the free phase on the gas
concentration in the supersaturated solution is taken to be a linear function, By specifying the proportionality
coefficient in this function, it is possible to model the delay in the time of consolidation of molecules into bubbles,
which increase the compressibility of the medium. The possibility of entraining the bubbles in ice crystals due to
microperturbations of the freezing boundary is also ignored in the model.
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In spite of a number of simplifying assumptions, the formulation of the problem provides a more complete
description of freezing processes in closed volumes. An important feature that distinguishes this model from the
case where the presence of dissolved gas is ignored is the dependence of rate of pressure rise on the conditions
determining the rate of ice formation.

The problem of heat transfer and diffusion with a moving boundary is solved numerically using the finite-
element method with moving coupled meshes proposed in [5] for nonlinear heat-conduction problems and tested
in [6] for the heat- and mass-transfer equations in the problem of freezing of a salt solution. Calculation of fields
using moving coupled meshes reduces to an analysis of displacements of points with specified nodal values of the
solution. This approach allows one to determine the phase-transition boundary with minimum computational costs
and to calculate the simultaneous heat-transfer and diffusion processes, whose characteristic rates differ by three
orders of magnitude. In particular, a coupled mesh automatically arranges nodes inside a thin diffusion layer that
moves together with the interface.

Formulation of the Problem. We consider a water volume V0 which has the shape of a flat layer of
thickness R with a heat insulated surface r = 0 or the shape of a cylindrical or spherical region of radius R. In the
initial state, the water temperature is T0 and its pressure is P0. The water contains a dissolved gas in homogeneous
equilibrium volume concentration C0. Cooling from the surface r = R occurs by heat convection or by maintenance
of the specified temperature on the surface. Subsequently, we assume that the initial temperature T0 is equal to
the freezing temperature of the medium at the specified initial pressure and a cooling temperature Tb < T0, so that
for any forms of cooling, freezing begins at the initial time.

We shall consider only a conductive heat-transfer mechanism. The heat-transfer process with simultaneous
freezing is described by the one-dimensional system of equations in the appropriate coordinate system:
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Here T is the temperature, λ and a are the thermal conductivity and temperature diffusivity, respectively; the
superscripts s = 0, 1, and 2 refer to flat, cylindrical, and spherical geometries, respectively; Tm(P ), L, and rm(t) are
the temperature, specific heat, and coordinate of the boundary of the water–ice phase transition, P is the pressure,
ρ is the density, and h is the heat-transfer coefficient. The subscripts w and i refer to water and ice, respectively.

The freezing temperature depends on pressure according to the Clausius–Clapeyron law
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,

where the variations in the densities of water and ice with increasing pressure can be ignored.
The expulsion of the dissolved gas during water freezing, the redistribution of the gas concentration due to

diffusion, and possible gas passage into the free phase are described by the equations
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where D is the gas diffusion coefficient in water, f(C) is a function that defines the rate of gas release from the
solution when the gas concentration exceeds the value corresponding to the equilibrium pressure. The pressure
dependence of the gas concentration is described by the linear Henry law

Ceq = C0 + Γ(P − P0),

where Γ is the solubility constant. The water cooling due to the release of dissolved gas is ignored (because of its
small volume fraction).

During water freezing, the excess volume of ice is compensated by the corresponding decrease in the volumes
of water, ice, and free gas due to their compressibility. Thus, when the volume of ice increases by dVi, the following
equality should be satisfied: (

1 − ρi

ρw

)
dVi = −(δVi + δVw + δVa). (1)

Here δV is the volume change of the corresponding media due to their compressibility; the subscript a corresponds
to the gas in the free state.

Taking into account the compressibility only due to pressure rise, for ice and water we obtain the relations

δVi = −βiVi dP, δVw = −βwVw dP, (2)

and for the gas,

Va =
(Va)0P0

P
, δVa = − (Va)0P0

P 2
dP. (3)

Here β is the compression ratio and (Va)0 is the free-gas volume Va referred to the initial pressure P0. The free-gas
accumulation in the system is calculated by integrating the source function f(C(r, t)) in the diffusion equation over
the region 0 < r < rm(t) for the entire period of time. The rate of gas release into the free phase is described by
the linear relation

f(C) = kcH(C − Ceq)(C − Ceq),

where H(C) is a Heaviside function, kc is a coefficient that simulates the delay due to the consolidation of molecules
into bubbles, which increase the compressibility of the medium.

In the dimensionless variables
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the problem reduces to the following system of equations:
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Here α = ai/aw, εm = λw/λi, δ = ai/D, kσ = kcR
2/D, St = λi(T0 − Tb)/(aiρiL) is the Stefan number, and

Bi = hλi/R is the Biot number.
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Fig. 1. Limiting estimates of the pressure rise during ice formation for C0 = 0.1 (solid curves), 0.05
(dashed curves), and 0 (dotted curves) and ν0 = 0 (1), 0.01 (2), and 0.03 (3).

The dimensionless relations for the freezing temperature and the equilibrium gas concentrations become

θm(ϕ) = θ∗ + ((θm)0 − θ∗) e−kθ(ϕ−1), σeq = 1 + γ(ϕ− 1), (5)

where θ∗ = (T0 + 273.2)/(Tb − T0), (θm)0 is the dimensionless initial equilibrium freezing temperature, kθ

= χP0/(ρiL), γ = ΓP0/C0, and χ = 1 − ρi/ρw.
For the calculation of the pressure in the unfrozen region by relations (1)–(3) ignoring the variation in the

density of water and ice on the left side of Eq. (1), we obtain the differential equation with the initial condition

dϕ

dψ
=

χϕ2

(b1 − b2ψ)ϕ2 + (1 − b1ϕ)ν
, ϕ(0) = 1, (6)

where ψ = Vi/V0 = 1− η(τ)s+1 is the volume fraction of ice formed, ν = (Va)0/V0 is the volume fraction of free gas
(referred to the initial pressure), b1 = βwP0, and b2 = (βw − βi)P0.

The amount of accumulated free gas is calculated by the relation

ν(τ) = ν0 + C0(s+ 1)kσ

τ∫

0

η(τ)∫

0

H(σ − σeq)(σ − σeq)ξs dξ dτ, (7)

where ν0 is the initial volume fraction of free gas.
We note that solution of Eq. (6) yields preliminary limiting estimates of the pressure rise ϕ(ψ) for the freezing

of a closed volume for the two limiting idealized cases of the absence of dissolved gas [for ν(ψ) = ν0] and the release
of the entire dissolved gas from the freezing water into the free phase [for ν(ψ) = ν0 + C0ψ]. A comparison of the
solutions for these cases presented in Fig. 1 shows that they differ significantly even for small values of ν0 and C0

[except for the case of the absence of gas in the free state at the initial time (ν0 = 0)]. For ν0 = 0, gas release does
not lead to an increase in the compressibility of the medium due to an instantaneous pressure rise in the initial
period of freezing. In practice, a freezing medium always has a certain initial reserve of compressibility, which can
be modeled by nonzero value of ν0 in the model considered. From Fig. 1 it follows that an increase in ν0 can lead
to an enhancement of the effect of dissolved gas on the delay in pressure rise.

Modeling Results. The problem (4)–(7) was solved numerically using an implicit finite-element scheme
with moving coupled meshes [5, 6]. In this case, the phase-transition boundary and the adjoining layer with a
perturbed concentration of dissolved gas is selected automatically. Calculations showed that in using this scheme
to solve heat-conduction equations and the equations describing the diffusion and release of dissolved gas, 21 nodes
for each case are sufficient. For control, we examined the balance of the volumes of the gas forced out during water
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Fig. 2. Time dependences of the pressure (a), the total volume of the released gas (b), the ratio
νout/νin (c), and the volume fraction of ice formed (d) for various values of the dimensionless
coefficient of the gas-release rate: kσ = 105 (1), 104 (2), 2.5 · 103 (3), 103 (4), and 0 (5); ν0 = 0.02,
C0 = 0.1, Tb = −2◦C, and Bi = 5.

freezing, the gas dissolved in it, and the gas released into the free phase. The difference between the calculation
results did not exceed 0.25% of the relative value of the parameter.

In the calculations, the following initial data were used: λw = 0.567 W/(m ·K), λi = 2.22 W/(m ·K),
aw = 1.35 · 10−7 m2/sec, ai = 1.14 · 10−6 m2/sec, ρw = 1000 kg/m3, ρi = 917 kg/m3, L = 332 · 103 J/kg,
βw = 5.1 · 10−10 Pa−1, βi = 1.1 · 10−10 Pa−1, D = 1.6 · 10−9 m2/sec, Γ = 1.35 · 10−7 nm3/(m3·Pa), T0 = 0◦C, and
P0 = 105 Pa. During the numerical experiments, we varied the parameters describing the cooling rate (Tb and Bi),
the parameters determining the compressibility of the medium due to the presence of dissolved and free gas (C0

and ν0), and the coefficient of the rate of gas release into the free phase kσ; the solutions for different geometries of
the freezing volume were compared.

Figure 2 shows the results of solution of the problem for a cylindrical volume obtained for various values of
the coefficient kσ. The value of kσ is determined by the ratio of the rate of consolidation of gas molecules into the
free phase to the rate of their diffusion in the solution, and by the dimensions of the freezing volume. In the lack of
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Fig. 3. Pressure in the unfrozen volume (a) and the ratio νout/νin (b) versus the volume fraction of
ice formed at temperatures Tb = −5 (1), −10 (2), and −20◦C (3) and different cooling conditions
(ν0 = 0.02, C0 = 0.1, and kσ = 104): the solid curves refer to a fixed temperature on the cooling
surface and the dashed curves to convective cooling for Bi = 5; the dotted curve refers to the
calculation ignoring the effect of dissolved gas.

experimental data, the values of this coefficient were varied over a broad range; the value of kσ = 105 corresponds
to almost instantaneous gas release into the free phase.

The nature of the curves presented in Fig. 2a indicates the period preceding the sharp pressure rise increases
with increasing coefficient kσ. For comparison, Fig. 2a shows the curve obtained by solving the problem ignoring
dissolved-gas release (kσ = 0). In this case, the pressure rise in the volume begins much earlier. The delay in the
pressure rise depends on the volume fraction of free gas accumulated by the moment of the sharp pressure rise and
the termination of gas release; the volume fraction, in turn, depends on the coefficient kσ. The time dependences
of the volume of the gas released into the free phase (νout = ν − ν0) and its fraction in the total amount of the
gas forced out from the freezing water (νin) are presented in Fig. 2b and c. An increase in the compressibility of
the medium due to gas release leads to a change in the freezing dynamics and an increase in the maximum volume
of ice formed by the moment the freezing and cooling temperatures become equal (Fig. 2d). For rapid gas release
(kσ = 104–105) the volume of ice formed by the moment of attainment of thermodynamic equilibrium is 1.5 times
larger than that in the case of ignoring dissolved-gas release.

Similar dependences are obtained in calculations of freezing with a specified surface temperature maintained
on the surface. In this case, however, for the same initial data, the curves corresponding to intermediate values
of kσ are distributed more uniformly, which indicates that the process is influenced by cooling conditions.

If dissolved-gas release is taken into account, the pressure depends not only on the volume fraction of ice
formed but also on the freezing rate. With decreasing cooling rate, which is determined by the cooling temperature
and the heat-transfer coefficient, the pressure increases much more slowly with increasing volume of ice, which is
confirmed by the calculation results presented in Fig. 3a. This is due to the fact that in the case of slower ice
formation, a larger amount of dissolved gas is released into the free phase. On the other hand, a high rate of
freezing leads to a rapid pressure rise and an increase in the equilibrium gas concentration in the solution, resulting
in a decrease in the gas-release rate and the amount of free gas in the volume. This conclusion is confirmed by
the nature of the time dependence of the ratio νout/νin with increasing volume fraction of ice: as the cooling rate
increases, the fraction of the gas released into the free phase decreases compared to the fraction of the gas remaining
in the dissolved state (Fig. 3b). If the presence of dissolved gas is ignored, then, by virtue of Eq. (6), the pressure
is uniquely determined only by the volume fraction of ice irrespective of the cooling conditions (the dotted curve in
Fig. 3a).
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In the numerical experiments, similar results were obtained for freezing regions of different geometries. Under
the same conditions, freezing proceeds faster in a spherical volume than in a cylindrical or a flat region. Accordingly,
for the same volume of ice, the pressure increases faster in a spherical cavity.

Conclusions Water freezing in closed volumes leads to a pressure rise in the unfrozen region. A rapid pres-
sure rise occurs as the compressibility reserve of the medium is exhausted. As shown by the numerical experiments
using the proposed mathematical model, the presence of gas dissolved in water leads to an increase in the period
preceding the rapid pressure rise. The effect of dissolved gas is more pronounced the lower the freezing rate, which
depends on the cooling conditions and the geometry and dimensions of the freezing region. The effect of dissolved
gas becomes more significant as the gas concentration in the solution and the initial compressibility of the medium
increase. The indicated factors also influence the results of calculations of the ice formation dynamics. In particular,
the larger maximum possible volume of ice is formed by the moment of attainment of thermodynamic equilibrium.

In conclusion, we note that in all cases considered, up to the attainment of equilibrium values of the pressure
and the fraction of ice formed, the boundary of the diffusion layer did not reach the center of the solidifying volume,
which is due to the low initial gas concentration in water. Thus, the possibility of the formation of a solid region
with free gas in the volume under the conditions considered was ruled out.
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